Pin Names	Description
CLKIN, $\overline{\text { CLKIN }}$	Differential Clock Inputs
CLK $_{1-4}, \overline{\text { CLK }}_{1-4}$	Differential Clock Outputs
TCLK	Test Clock Input \dagger
CLKSEL	Clock Input Select \dagger

\dagger TCLK and CLKSEL are single-ended inputs, with internal $50 \mathrm{k} \Omega$ pulldown resistors.

Truth Table

CLKSEL	CLKIN	CLKIN	TCLK	CLK $_{\mathbf{N}}$	CLK $_{\mathbf{N}}$
L	L	H	X	L	H
L	H	L	X	H	L
H	X	X	L	L	H
H	X	X	H	H	L

[^0]
Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature (T_{J})
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$+175^{\circ} \mathrm{C}$
Case Temperature under Bias (T_{C})
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
V_{CC} to +0.5 V
$-50 \mathrm{~mA}$
Operating Range (Note 2) $\quad-5.7 \mathrm{~V}$ to -4.2 V
ESD (Note 2)
$\geq 2000 \mathrm{~V}$
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating

Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (VE)	-5.7 V to -4.2 V

Commercial Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\text { Min })} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\operatorname{Max})} \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610			
V_{IH}	Single-Ended Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
$\mathrm{V}_{\text {IL }}$	Single-Ended Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
IIL	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(}}$ Min)	
$\mathrm{IIH}^{\text {H }}$	Input High Current CLKIN, CLKIN TCLK CLKSEL			$\begin{aligned} & 150 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$	
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	Required for Full Output Swing	
V_{CM}	Common Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$		$\mathrm{V}_{C C}-0.5 \mathrm{~V}$	V		
$\mathrm{I}_{\text {CBO }}$	Input Leakage Current	-10			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$	
I_{EE}	Power Supply Current	-67		-35	mA		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Commercial Version (Continued)
AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	750		750		750		MHz	
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Propagation Delay CLKIN, $\overline{\mathrm{CLKIN}}$ to $\mathrm{CLK}_{(1-4)}, \overline{\mathrm{CLK}}_{(1-4)}$ Differential Single-Ended	$\begin{aligned} & 0.59 \\ & 0.59 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 1.07 \end{aligned}$	ns	Figures 1, 3
$t_{\text {PLH }}$ tpHL	Propagation Delay, TCLK to $\operatorname{CLK}_{(1-4)}, \overline{\operatorname{CLK}}_{(1-4)}$	0.50	1.20	0.50	1.20	0.50	1.20	ns	Figures 1, 2
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, CLKSEL to $\operatorname{CLK}_{(1-4)}, \overline{\operatorname{CLK}}_{(1-4)}$	0.80	1.60	0.80	1.60	0.80	1.60	ns	Figures 1, 2
$\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	0.80	0.30	0.80	0.30	0.80	ns	Figures 1, 4
$\begin{aligned} & \text { tost } \\ & \text { DIFF } \end{aligned}$	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		50		50		50	ps	(Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (tOSHL), or LOW to HIGH (tOSLH), or in opposite directions both HL and LH (tost). Parameters tost and tps guaranteed by design.
Industrial Version
DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \\ & \hline \end{aligned}$	Loading with
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\operatorname{Min})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\operatorname{Max})} \end{aligned}$	$\begin{aligned} & 50 \Omega \text { to } \\ & -2.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{Min})} \end{aligned}$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{Max})} \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \Omega \text { to } \\ & -2.0 \mathrm{~V} \end{aligned}$
V_{IH}	Single-Ended Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIG for All Inputs	Signal
VIL	Single-Ended Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LO for All Inputs	Signal
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ILI(Min) }}$	

Military Version-Preliminary (Continued)

DC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{v}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Note 3) (Continued)

Symbol	Parameter	Min	Typ	Max	Units	T_{C}	Conditions	Notes
$\mathrm{V}_{\text {DIFF }}$	Input Voltage Differential	150			mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Required for Full Output Swing	1, 2, 3
V_{CM}	Common Mode Voltage	$\mathrm{V}_{C C}-2.0$		$V_{C C}-0.5$	V	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		1, 2, 3
V_{IH}	Single-Ended Input High Voltage	-1165		-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed HIGH Signal for All Inputs	1, 2, 3, 4
$\mathrm{V}_{\text {IL }}$	Single-Ended Input Low Voltage	-1830		-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for All Inputs	1, 2, 3, 4
I_{IH}	Input HIGH Current CLKIN, $\overline{\text { CLKIN }}$			120	$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$	1, 2, 3
	TCLK			350	$\mu \mathrm{A}$			
	CLKSEL			300	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {CBO }}$	Input Leakage Current	-10			$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EE}}$	1, 2, 3
${ }^{\text {EEE }}$	Power Supply Current, Normal	-90		-30	mA	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$		1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups $1,2,3,7$, and 8 .
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$, Subgroups A1, 2, 3, 7 , and 8 .
Note 4: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$.
AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay CLKIN, $\overline{\mathrm{CLKIN}}$ to $\mathrm{CLK}_{(1-4)}, \mathrm{CLK}_{(1-4)}$	0.61	0.81	0.61	0.81	0.60	0.83	ns	Figures 1 and 2	1,2, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, TCLK $\text { to } \mathrm{CLK}_{(1-4)}, \overline{\operatorname{CLK}}_{(1-4)}$	0.50	1.20	0.50	1.20	0.50	1.20	ns		
ts G-G	Skew Gate to Gate (Note 5)		100		100		100	ps		4
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	0.80	0.30	0.75	0.25	0.75	ns		

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$, then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 2: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$ temperature only, Subgroup A9.
Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at $+25^{\circ} \mathrm{C}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperatures, Subgroups A10 and A11.
Note 4: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ temperature (design characterization data).
Note 5: Maximum output skew for any one device.

TL/F/10960-3
Note 1: Shown for testing CLKIN to CLK1 in the differential mode.
Note 2: L1, L2, L3 and L4 = equal length 50Ω impedance lines.
Note 3: All unused inputs and outputs are loaded with 50Ω in parallel with $\leq 3 \mathrm{pF}$ to GND.
Note 4: Scope should have 50Ω input terminator internally.
FIGURE 1. AC Test Circuit

FIGURE 2. Propagation Delay, TCLK, CLKSEL to Outputs

FIGURE 3. Propagation Delay, CLKIN/CLKIN to Outputs

FIGURE 4. Transition Times
Note 1: The output to output skew, which is defined as the difference in the propagation delays between each of the four outputs on any one 100115 shall not exceed 75 ps .

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

16 Lead Small Outline Integrated Circuit (S)
NS Package Number M16A
100315 Low-Skew Quad Clock Driver

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: $\mathrm{L}=$ Low Voltage Level
 H = High Voltage Level
 X = Don't Care

